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This paper extends our recent theoretical work concerning the feasibility of stable and accurate computation
of turbulence using a large eddy simulation[M. Ida and N. Taniguchi, Phys. Rev. E68, 036705(2003)]. In our
previous paper, it was shown, based on a simple assumption regarding the instantaneous streamwise velocity,
that the application of the Gaussian filter to the incompressible Navier-Stokes equations can result in the
appearance of a numerically unstable term that can be decomposed into positive and negative viscosities. That
result raises the question as to whether an accurate solution can be achieved by a numerically stable subgrid-
scale model. In the present paper, based on assumptions regarding the statistically averaged velocity, we
present similar theoretical investigations to show that in several situations, the shears appearing in the statis-
tically averaged velocity field numerically destabilize the fluctuation components because of the derivation of
a numerically unstable term that represents negative diffusion in a fixed direction. This finding can explain the
problematic numerical instability that has been encountered in large eddy simulations of wall-bounded flows.
The present result suggests that this numerical problem is universal in large eddy simulations, and that if there
is no failure in modeling, the resulting subgrid-scale model can still have unstable characteristics; that is, the
known instability problems of several existing subgrid-scale models are not something that one may remove
simply by an artificial technique, but must be taken seriously so as to treat them accurately.
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I. INTRODUCTION

Turbulence is one of the unsolved problems of physics
[1]. Because a complete theoretical description has not yet
been achieved even for a relatively simple flow configura-
tion, numerical simulations are commonly used as a power-
ful tool for analyzing turbulent flows. Typical numerical ap-
proaches include the direct numerical simulation(DNS), the
Reynolds-averaged Navier-Stokes(RANS), and the large
eddy simulation(LES). In DNS, all the scales of motion in
the turbulent flows are resolved by sufficiently fine compu-
tational grids, whereas in RANS, only the evolution of mean
quantities is solved. LES is an intermediate technique be-
tween these approaches, directly solving the large scales but
modeling small-scale eddies by employing a subgrid-scale
(SGS) model (or a subfilter-scale model) that approximately
accounts for the effects of the small scales on the large scales
[2]. Because LES enables us to solve time-dependent large-
scale turbulent flow problems with a relatively small compu-
tational time and storage compared to those required for
DNS, this technique has recently been used not only for aca-
demic studies but also for practical industrial flow computa-
tions that need time-dependent solutions.

One of the major problems of LES is numerical instabil-
ity. As is already known, several existing SGS models(e.g.,
the tensor-diffusivity[3], the scale-similarity[4], and the dy-

namic Smagorinsky[5] models), which have been con-
structed based on a filtering procedure and the statistical
properties of turbulence, have a numerically unstable prop-
erty, and hence some artificial numerical treatments(e.g.,
smoothing or clipping of the SGS stress) have been incorpo-
rated so as to guarantee numerical stability[2,5–8]. While
the mechanisms of these models’ unstable behaviors have
been described in the literature(e.g., Refs.[2,8–11]), the
underlying reason as to why the SGS models have an un-
stable property has, to the authors’ knowledge, not yet been
fully clarified. To construct an excellent SGS model that is
free from artificial, unphysical numerical treatments and has
applicability to a wide range of flow configurations with high
accuracy and robustness, it is necessary to elucidate the un-
derlying mechanism of those unstable properties. Is this nu-
merical problem caused by a failure in modeling or by other
factors? To answer this question, it should be meaningful to
consider a similar but idealized question:whether a com-
pletely accurate SGS model, if it exists, would be numerically
stable.

In Ref. [10], Leonard has shown that the tensor-diffusivity
model, which was derived by truncating an exact expansion
series of the SGS stress terms and is thus exact under a
certain condition, should behave unstably along the stretch-
ing directions of fluid motion. This unstable behavior results
from the negative diffusivity of that model, which makes the
governing equations ill-conditioned and leads to numerical
instability when treated numerically by, e.g., finite difference
methods. Winckelmanset al. [8] have performed several nu-
merical experiments using the pure(and mixed) tensor-
diffusivity model and have pointed out that the model be-
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haves unstably under a wall-bounded flow condition, while it
can provide a stable result for turbulent isotropic decay. In a
recent paper[12] we have shown theoretically that the filter-
ing procedure, which is the most fundamental component of
LES, is a potential seed of the numerical instability in LES.
Without having resorted to any SGS model, but based on a
simple assumption regarding the streamwise component of
flow velocity, we found that under a wall-bounded flow con-
dition, the application of a Gaussian filter(one of the filters
commonly used in LES[13]) to the Navier-Stokes equations
results in the appearance of a numerically unstable term, a
cross-derivative of the filtered velocity component, which
can be decomposed into diffusion and negative-diffusion
terms. The above findings indicate that apparently the appli-
cation of Gaussian filtering stabilizes the physical properties
of the governing equations, but this is not always the case.
That result implies that even a completely accurate SGS
model that perfectly reproduces the physical properties of the
true SGS components might not always be numerically
stable.

However, the theoretical works of both Leonard and Ida
and Taniguchi are insufficient to fully clarify the mechanism
of numerical instabilities in actual simulations. While those
studies have only considered the instantaneous nature of the
SGS model or of the SGS forces, it is possible that their
time-averaged nature is dissipative and that stable simula-
tions can thus be achieved. Indeed, as mentioned above, the
tensor-diffusivity model, which has an unstable property, can
provide stable solutions for an isotropic turbulent flow[8].
This observation suggests that further efforts must be made
to improve our understanding of the numerical instabilities in
LES.

In the present paper, we have extended our previous work
so as to obtain more acceptable and reliable results and to
show that this numerical problem is universal in LES based
on Gaussian filtering. We have previously assumed that the
instantaneous value of the streamwise velocity component is
linearly proportional to the distance from a plane wall paral-
lel to the bulk flow. In contrast, in the present paper our
discussion assumes that the statistically averaged streamwise
velocity component is linearly proportional to the distance
from the wall, an assumption that is more realistic because
this is the case of a viscous sublayer forming near a plane
wall. Furthermore, we discuss cases where an axisymmetric
swirl exists in the statistically averaged velocity field. As will
be shown in the following section, a numerically unstable
term with a time-independent coefficient can appear in both
situations. This term is always unstable in a fixed range of
directions, while the previously discussed unstable character-
istics of the model and of the SGS terms depend on the
directions of instantaneous stretching[10] or of instanta-
neous shears[12]. Therefore, the present theoretical result
can more accurately explain the numerical instabilities fre-
quently encountered in inhomogeneous flows that involve a
strong steady shear in the mean velocity field.

This paper is organized as follows: In Sec. II B we reex-
amine the wall-bounded flow case, and in Sec. II C we ex-
tend our theory to swirling flow cases. In the Appendixes, we
provide additional notes on further extensions of our theory.
Section III presents concluding remarks.

II. THEORETICAL INVESTIGATIONS

A. Filtering approach

Incompressible, viscous fluid flows are described by the
Navier-Stokes equations, which read

] ui

] t
+

] ujui

] xj
= −

] p

] xi
+ n

]2ui

] xj ] xj
for i = 1,2,3, s1d

] ui

] xi
= 0, s2d

where Einstein’s summation convention is assumed, andui
=uisx1,x2,x3,td are the velocity components,p is the pres-
sure divided by the constant fluid density, andn is the kine-
matic viscosity. In LES, a filter is applied to this system of
equations to separate the large and small scales. This filter-
ing procedure is in general achieved by the following con-
volution:

F̄sx, . . . ,td =E
X=−`

X=`

Lsx − XdFsX, . . . ,tddX, s3d

where s·d denotes the filtered quantity,x is an independent
variable of an arbitrary functionF, and LsXd is the filter
function. In the present study, we assumeLsXd to be the
Gaussian function

LsXd =Î g

D2p
expS−

gX2

D2 D , s4d

which satisfieseX=−`
X=` LsXddX=1, whereD is the filter width

sassumed to be constantd, andg is a real, positive constant.
In the previous paper we set tog=1/2 asdone by Klimas for
the Vlasov equation, whileg=6 is generally used in LES
f13g; we adopt the latter value in the present study. Applying
the filtering operation to Eqs.s1d and s2d yields

] ūi

] t
+

] ujui

] xj
= −

] p̄

] xi
+ n

]2ūi

] xj ] xj
, s5d

or

] ūi

] t
+

] ūjūi

] xj
= −

] p̄

] xi
+ n

]2ūi

] xj ] xj
−

] ti j

] xj
, s6d

ti j ; uiuj − ūiūj ,

with

] ūi

] xi
= 0, s7d

where we used

S ] f

] t
D =

] f̄

] t
and S ] f

] xj
D =

] f̄

] xj

sf being a dependent variabled, andti j is the so-called SGS
stress tensor that generally needs to be modeled.
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Before getting into the main subject, we present here
some mathematical tools useful for the present investigation.
Supposing that the Gaussian filter is applied in thexi direc-
tion, we have

sxi fd = xi f̄ +
D2

2g

] f̄

] xi
s8d

and

sxj fd = xj f̄ for j Þ i , s9d

which can be given in the same manner as shown in Refs.
f12,14,15g, and have been utilized in, e.g., Ref.f16g. Using
Eq. s8d, we have

x̄i = xi , s10d

sxi
2d = xi

2 +
D2

2g
. s11d

Based on these results, in the following sections we per-
form theoretical investigations concerning the Gaussian fil-
tered Navier-Stokes equations under a plane channel and
swirling flow conditions.

B. Plane channel flow

Suppose thatx1, x2, andx3, respectively, are the stream-
wise, the wall-normal, and the spanwise directions, and a
plane solid wall is set forx2ø0. Decomposing the velocity
components into the statistically averaged valueUi and fluc-
tuation partui8, we have

uisx,td = Uisxd + ui8sx,td, s12d

whereUi is assumed to not depend on time. Furthermore, we
assume that

Usxd = „U1sxd,U2sxd,U3sxd… = sbx2,0,0d s13d

with b being a real constant, i.e., the mean streamwise ve-
locity is linearly proportional to the distance from the wall.
sThe extension to more general cases is briefly discussed in
Appendix A.d Based on these assumptions, one knows

] Ui

] xi
=

] ui8

] xi
= 0. s14d

Substituting Eqs.(12) and (13) into the convection terms
in the equation foru1 and using Eq.(14), we have

] uju1

] xj
= U1

] u18

] x1
+

] U1

] x2
u28 +

] uj8u18

] xj
= bx2

] u18

] x1
+ bu28 +

] uj8u18

] xj
.

s15d

Applying Gaussian filtering in the wall-normal direction to
this equation yields

] uju1

] xj
= Ū1

] ū18

] x1
+ b

D2

2g

]2ū18

] x1 ] x2
+

] Ū1

] x2
ū28 +

] uj8u18

] xj

= bx̄2
] ū18

] x1
+ b

D2

2g

]2ū18

] x1 ] x2
+ bū28 +

] uj8u18

] xj
, s16d

where we use Eq.s8d andU1=Ū1 given easily by Eq.s10d.
Even if a three-dimensional Gaussian filter is adopted, al-
most the same formula is derived becauseU1 only depends
on x2, and hence no additional term is derived by filtering in
the other directions. Meanwhile, the convection terms in
terms of the filtered velocity components,]sūjū1d /]xj, can be
written as

] ūjū1

] xj
= Ū1

] ū18

] x1
+

] Ū1

] x2
ū28 +

] ūj8ū18

] xj
. s17d

From Eqs.s16d and s17d, we have

] t1j

] xj
= b

D2

2g

]2ū18

] x1 ] x2
+

] suj8u18 − ūj8ū18d
] xj

. s18d

Substituting this and]2Ū1/]xj ]xj =0 into Eq.s6d yields

] ū1

] t
+

] ūjū1

] xj
= −

] p̄

] x1
+ n

]2ū18

] xj ] xj
− b

D2

2g

]2ū18

] x1 ] x2

−
] suj8u18 − ūj8ū18d

] xj
, s19d

which can be considered an equation for bothū1 and ū18
because

] ū1

] t
=

] ū18

] t
.

The second-to-last term of Eq.s19d is a cross-derivative of
the dependent variableū18. As has been proved in several
studies se.g., Refs.f12,15gd, the derivatives of this type
should be numerically unstable when, for instance, a finite
difference technique is adopted for solving the equation. In
what follows, we consider the stability condition for Eq.
s19d.

The last three terms of Eq.(19) may make a dominant
contribution to the numerical stability of LES. We will first
focus our attention on the second- and third-to-last terms

n
]2ū18

] xj ] xj
− b

D2

2g

]2ū18

] x1 ] x2
. s20d

Applying the coordinate transformation of

sj,hd = Sx1 + x2

Î2
,
− x1 + x2

Î2
D , s21d

which represents rotation by 45°around thex3 axis, Eq.
s20d is rewritten as
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nS ]2ū18

] j2 +
]2ū18

] h2 +
]2ū18

] x3
2 D − b

D2

2g
S1

2

]2ū18

] j2 −
1

2

]2ū18

] h2D . s22d

From this, it can be seen that the following restriction is
required to ensure that Eq.s22d is a positive viscosity

n −
D2

4g
ubu ù 0. s23d

The shear gradientb may have different values depending
on the problems considered. We consider here a simple ex-
ample to show concretely how restriction(23) works in a
realistic situation. As is well known, in the viscous sublayer
of turbulent channel flows, the statistically averaged stream-
wise velocity follows[17]:

U1sx2d = utS uutu
n

x2D , s24d

with ut being the wall-friction velocity. Using Eq.s24d and
rewriting reduce Eq.s23d to

uutu
n

D = D+ ø 2Îg, s25d

where the superscript + denotes a quantity in the wall units.
For g=6, this result essentially corresponds to the stability
condition derived by Kobayashi and Shimomura from the
tensor-diffusivity term in a dynamic SGS modelf11g.

We should note here that Eq.(25) is a minimum condition
for stabilizing the numerical solution; the last term of Eq.
(19), which we have neglected, can also be a seed of numeri-
cal instability because if, for example,u18~x2 is true at a
certain instant and location, then

Su18
] u18

] x1
D − ū18

] ū18

] x1
~

]2ū18

] x1 ] x2
.

sSee Ref.f12g.d Nevertheless, this incomplete condition cre-
ates a strong restriction on the grid widthshd. The grid width
should satisfyh+øÎ6<2.4 for D+=2h+, a setting that has
frequently been used, orh+øÎ6/2<1.2 for D+=4h+,
which is necessary for the contribution of the SGS force to
be significant compared to the truncation and aliasing er-
rors of a second-order finite difference schemef18g. sWe
should note here that this restriction is imposed only on
the grid width in the wall-normal direction because only
the filtering in this direction yields the cross-derivative
term, as mentioned already.d This result implies that at
least several grid points are needed in the viscous sublayer
to guarantee numerical stability, which is a formidable
restriction in practical applications of a large-scale high-
Reynolds-number turbulent flow. It is known that when
the inner layer of turbulent boundary-layer flows is re-
solved, the number of grid points required for LES ex-
ceeds current computational capacities even at moderate
Reynolds numbers, and hence developments of SGS mod-
els that are applicable to a coarse wall-normal grid and of
wall models that do not need a strong refinement of the
near-wall grids are the most pressing issues of LES; see a

recent review by Piomelli and Balarasf19g. The numerical
problem that we have suggested above provides a taste of
the difficulties of constructing an excellent model.

The stability condition presented above would be partly
weakened if the last term of Eq.(19) is modeled using an
eddy-viscosity model. However, this treatment does not al-
ways achieve a stable solution. Actually, Winckelmanset al.
[8] have observed by numerical experiments that for a plane
channel flow, a dynamic mixed model based on the tensor-
diffusivity model (which can accurately represent the char-
acteristics of second-order cross derivatives[11]) generates
numerical instabilities that eventually make the numerical
simulation blow up. To remove those instabilities, they were
forced to add an artificial damping coefficient to the tensor-
diffusivity portion. In the mixed model that they used, the
coefficient of eddy-viscosity part was well tuned by a dy-
namic procedure. Essentially the same observations of the
numerical instability of the dynamic mixed model can be
found in Ref.[11] by Kobayashi and Shimomura. In those
studies, the wall-normal grid width was set to be several
times larger than that used in DNS. That is, those studies
suggest that, for a large grid(and filter) width, which is
much-needed in practical applications, the addition of an
eddy-viscosity term does not always guarantee numerical
stability. If, on the other hand, all the SGS terms are modeled
using an eddy-viscosity model whose coefficient is guaran-
teed to be positive, the numerical stability of the filtered
system would be guaranteed in many cases. However, it has
been suggested by many researchers that eddy-viscosity
models have several deficiencies that make the LES results
suspicious(e.g., Refs.[2,9,20–25]). For instance, as has fre-
quently been demonstrated bya priori tests using DNS tech-
niques, the SGS quantities modeled using eddy-viscosity
models do not correlate well with the actual SGS quantities
[2,9,20,23,26], implying that these models have low accu-
racy and/or narrow applicability. Indeed, in the present case
the eddy-viscosity models cannot describe the cross-
derivative term in Eq.(19), which is a hybrid of positive and
negative diffusions. Moreover, eddy-viscosity models were
constructed under the assumptions that the subgrid turbu-
lence is isotropic and the filter scale is in an inertial range,
assumptions that are in general both violated in inhomoge-
neous turbulent flows, especially near walls. Furthermore,
the dynamic types of eddy-viscosity models need artificial
techniques for smoothing the model coefficient and for clip-
ping its negative values[2,5–7,27]. Based on the above, we
consider the eddy-viscosity models to be insufficient. Most
of the recent efforts at SGS modeling have been devoted to
developing a model that does not strongly rely on eddy-
viscosity models[7,8,25,26,28–31]. Models based on a kind
of “defiltering” procedure[25,29,30] are one such approach,
determining significant portions of the SGS terms by an ana-
lytical, not empirical, procedure. The mixed models based on
the tensor-diffusivity term[7,8,31] can also be categorized
into this type [26]. We should note here that attempts to
improve eddy-viscosity models are also being continued;
see, e.g., Refs.[24,27,32,33].

It is worth noting that the numerical stability of the cross-
derivative term in Eq.(19) is time-independent, as this term
always reveals a negative diffusivity in a fixed range of di-
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rections, whereas the numerical stability of the last term of
the same equation may be time-dependent. As mentioned in
Sec. I, Winckelmanset al. have pointed out that the numeri-
cal stability of the tensor-diffusivity model depends on the
problems that they have considered; obtaining stable results
is difficult to achieve for a strongly inhomogeneous(wall-
bounded) flow, even when an eddy-viscosity term is added,
but is possible for a homogeneous flow even by the pure
tensor-diffusivity model[8]. They have explained these re-
sults as follows: For the homogeneous flow, the direction in
which the tensor-diffusivity term reveals the negative diffu-
sivity evolves continuously in time and space, and hence the
model term may be dissipative on time average. However, in
the inhomogeneous flow case, long-lived negative diffusion
events can take place near the wall, leading to numerical
instability and a resulting divergence of the solution. As
mentioned above, those numerical findings indicate an inad-
equacy of the previous stability analyses by Leonard[10]
and by Ida and Taniguchi[12], which have only considered
the instantaneous behavior of the SGS model or the SGS
term. The present theoretical findings, showing the appear-
ance of a term that is always numerically unstable in fixed
directions and hence is unstable on time-average as well, can
more correctly explain the problematic numerical instability
encountered in the simulations of plane channel flows[8,11].

C. Swirling flow

Turbulent flows involving a large-scale swirl are of prac-
tical importance in connection with combustion engineering,
aeroacoustics, meteorology, and so on. In this section, we
discuss the LES of turbulent flows having a rotating mean
velocity about thex3 (or z) axis, and show that the existence
of the swirl can cause numerical instability through the
Gaussian filtering operation.

First, we consider a very simple case in which the swirl
has a constant angular velocity; that is, the mean velocity
takes the form of

Usxd = sax2,− ax1,0d, s26d

wherea is a real constant. This mean velocity satisfies

U ·x* = 0,

uUu/ux* u = uau,

and

] Ui

] xi
= 0,

wherex* ;sx1,x2,0d. As a result, we know

] ui8

] xi
= 0. s27d

Using the above, the convection terms foru1 are rewritten as

] uju1

] xj
= U1

] u18

] x1
+ U2

] u18

] x2
+

] U1

] x2
u28 + U2

] U1

] x2
+

] uj8u18

] xj
,

s28d

where the first four terms on the right-hand sidesRHSd result
from the existence of the swirl, among which the first and
second terms,

U1
] u18

] x1
+ U2

] u18

] x2
= ax2

] u18

] x1
− ax1

] u18

] x2
, s29d

may have a significant influence on the numerical stability of
the equation forū18.

We show here that the filtered formula and its stability
change depending on how the Gaussian filtering is applied.
Appling the Gaussian filter in thex2 direction to Eq.(29)
results in

SU1
] u18

] x1
D + SU2

] u18

] x2
D = ax2

] ū18

] x1
+ a

D2

2g

]2ū18

] x1 ] x2
− ax1

] ū18

] x2
,

which can be rewritten as

SU1
] u18

] x1
D − Ū1

] ū18

] x1
+ SU2

] u18

] x2
D − Ū2

] ū18

] x2
= a

D2

2g

]2ū18

] x1 ] x2
.

s30d

The cross-derivative term appearing on the RHS may cause
numerical instability when the absolute value of its coeffi-
cient is sufficiently large. In contrast, when the Gaussian
filter is applied in both thex1 andx2 directions, we obtain a
stable formula

SU1
] u18

] x1
D + SU2

] u18

] x2
D = ax2

] ū18

] x1
+ a

D2

2g

]2ū18

] x1 ] x2

− ax1
] ū18

] x2
− a

D2

2g

]2ū18

] x1 ] x2

= ax2
] ū18

] x1
− ax1

] ū18

] x2
,

and thus

SU1
] u18

] x1
D − Ū1

] ū18

] x1
+ SU2

] u18

] x2
D − Ū2

] ū18

] x2
= 0. s31d

Equations31d has no cross derivative.
Next, we consider the same example but in the cylindrical

coordinatesr ,u ,zd. In this case, the mean velocity(26) and
the instantaneous velocity, respectively, are represented by

Usr,u,zd = sUr,Uu,Uzd = s0,−ar,0d, s32d

and

sur,uu,uzd = sur8,Uu + uu8,uz8d, s33d

and the nonlinear terms in the Navier-Stokes equation foruu

take the form of
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ur
] uu

] r
+

uu

r

] uu

] u
+ uz

] uu

] z
+

uruu

r
; hu, s34d

where the velocity components should satisfy

0 =
] ur

] r
+

ur

r
+

1

r

] uu

] u
+

] uz

] z
=

] ur8

] r
+

ur8

r
+

1

r

] uu8

] u
+

] uz8

] z
.

s35d

Substituting Eq.s33d into Eq. s34d yields

hu =
Uu

r

] uu8

] u
+ S ] Uu

] r
+

Uu

r
Dur8

+ Sur8
] uu8

] r
+

uu8

r

] uu8

] u
+ uz8

] uu8

] z
+

ur8uu8

r
D . s36d

The terms in the last parentheses represent the nonlinear in-
teraction between the fluctuation components, whereas the
remaining terms describe the interaction between the mean
and fluctuation portions. Appling the Gaussian filter in ther
direction with a filter width ofDr to the first term results in

SUu

r

] uu8

] u
D = − a

] ūu8

] u
=

Ūu

r

] ūu8

] u
, s37d

where we used Eq.s10d and assumedr @Dr so that the value
of the Gaussian filter is sufficiently close to zero atr =0. No
unstable term appears in Eq.s37d. Even when the Gaussian
filter is applied in both ther and u directions, almost the
same formula is obtained becauseUu depends only onr.
Specifically, in the present case the resulting formula is not,
unlike the previous case, dependent on how the Gaussian
filter is applied.

The above results, which reveal that the numerical stabil-
ity of LES depends not only on the flow configuration but
also on the filtering strategy and coordinate system adopted,
can be interpreted as follows: As has been shown in Ref.[12]
and in the preceding section, the existence of a shear leads to
the appearance of a numerically unstable term. Although no
shear exists in the mean flow profile described by Eq.(26), a
virtual shear is observed when the Gaussian filter is applied
only in one direction in the Cartesian coordinate(x1 or x2),
resulting in the derivation of the cross-derivative term. This
problem does not arise for the cylindrical coordinate, since
the mean convection velocity in thesr ,ud space

Sdr

dt
,
du

dt
D = SUr,

Uu

r
D = s0,−ad,

is uniform.
Last, we consider a case where the mean velocity has a

second-order term, i.e., assuming

Usr,u,zd = s0,a1r + a2r
2,0d, s38d

wherea1 anda2 are real constants. Substituting this into the
first term on the RHS of Eq.s36d and applying the Gaussian
filter in the r direction, we have

SUu

r

] uu8

] u
D = sa1 + a2rd

] ūu8

] u
+ a2

Dr
2

2g

]2ūu8

] r ] u
, s39d

which can be rewritten as

SUu

r

] uu8

] u
D −

Ūu

r

] ūu8

] u
= − a2

Dr
2

2gr

] ūu8

] u
+ a2

Dr
2

2g

]2ūu8

] r ] u

s40d

because, based on Eqs.s10d and s11d

Ūu = a1r + a2Sr2 +
Dr

2

2g
D .

The last term of Eq.s40d is a cross derivative of the depen-
dent variable and should destabilize the numerical solution,
whereas the second-to-last term represents convection in the
u direction that can be solved stably. Fora2=0, the RHS
terms of Eq.s40d vanish, and this equation corresponds to
Eq. s37d. More specifically, the instability in this case is due
to the second-order component in the mean velocity, which
violates the uniformity of the angular velocity and thus rep-
resents a shear.

As in the plane-channel case, the cross-derivative terms
derived above have a time-independent coefficient and thus
should lead to numerical instability if an unsuitably large
filter is adopted. The present results imply that such an un-
stable term can appear in many situations. In a future paper,
we will consider more general and complicated flow con-
figurations to create a generalized theory of numerical insta-
bility due to filtering operations[34].

III. SUMMARY AND CONCLUSION

In summary, we have theoretically investigated the nu-
merical instability of LES caused by the filtering procedure
based on simple assumptions regarding the statistically aver-
aged velocity, and have shown that Gaussian filtering yields
a numerically unstable term, which always reveals a negative
diffusivity in a fixed range of directions in cases of both
plane channel flow and swirling flow. This conclusion con-
firms and extends that of our previous work[12]. We antici-
pate that it would be interesting to examine the relationship
between this numerical instability and the shear-induced
(physical) instabilities in turbulence[35,36].

Furthermore, we have presented several additional find-
ings. In Sec. II B, we showed that in the channel-flow case,
this numerical problem strongly restricts the wall-normal
grid width necessary for achieving stable and accurate solu-
tions. In the academic computations of a plane channel flow
using a LES technique, the grid width in the wall-normal
direction has sometimes been set to almost the same as that
required in DNS, and no filter is adopted in this direction
(e.g., Refs.[5,20,21,28,32]); the present result provides a
grounding for this custom. Furthermore, this result indicates
a significant difficulty in developing an excellent SGS model
that can provide satisfactory(i.e., not only stable but also
accurate) solutions, even with large wall-normal filter
widths, which is seriously desired in practical applications of
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high- (and even moderate-) Reynolds-number turbulence. In
Sec. II C, based on investigations of swirling flow cases, we
pointed out that the numerical stability of the filtered equa-
tions depends not only on the flow configuration, but also on
the dimension of the Gaussian filtering and the adopted co-
ordinate system. This finding would be of particular impor-
tance in practical applications that use a general curvilinear
coordinate system or unstructured grids.

In the present study(and also in our previous paper), it
was assumed implicitly that all the spectral modes contained
in the velocity field are fully resolved because the Gaussian
filter does not cut off any modes, but only damps the high-
frequency modes.(See Appendix B, which presents a related
remark concerning cases where the spectral cutoff or the top-
hat filter is employed, both of which eliminate certain
modes.) The present results therefore indicate that even in
such an ideal case, thecompleteSGS model(or, more pre-
cisely, thecompletesubfilter-scale model whose characteris-
tic length is determined independently from the grid width),
which can completely reproduce the properties of real SGS
stresses, can be numerically unstable when treated numeri-
cally, since the complete model perfectly describes the char-
acteristics of the unstable cross-derivative term. This prob-
lem poses a dilemma for practitioners of LES who are
looking for an accurate and stable SGS model. To improve
model accuracy, this numerical instability problem should be
confronted. However, if a rough, artificial treatment is
adopted for stability, the accuracy of the LES results will not
be guaranteed. A potential approach to overcoming this dif-
ficulty is, as suggested in our previous paper[12], to con-
struct a stable and accurate numerical solver for the numeri-
cally unstable term, though this would admittedly be quite a
difficult task. (Leonard[10] and Moeleker and Leonard[37]
have proposed Lagrangian methods based on the tensor-
diffusivity model and an anisotropic particle scheme to solve
the negative-diffusion problems, and have achieved stable
solutions for a two-dimensional scalar transport equation
with known velocity fields. However, several issues remain
to be overcome to extend those methods to the case of
Navier-Stokes turbulence[37].) Further careful and vigorous
considerations are necessary for this instability problem to be
solved.
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APPENDIX A: CLOSURE FOR HIGH-ORDER
MEAN VELOCITY

As a first step toward constructing a general theory for the
filtering instability, let us consider the closure of

SU1
] u18

] x1
D

in the case whereU1 is a general function ofx2, under the
assumption that the Gaussian filter is applied in thex2 direc-

tion. Using the Taylor expansion, the arbitrary function
U1sx2d is represented by a polynomial of infinite order

U1sx2d = o
n=0

`

anx2
n,

wherean are real constants. Therefore, what we have to do is
to consider the closure of

Sx2
n] u18

] x1
D sA1d

with n being an arbitrary positive integer. This is achieved as
follows: Using Eq.s8d successively, Eq.sA1d is rewritten
into a closed form in terms ofū18, as

Fx2Sx2
n−1] u18

] x1
DG = xSx2

n−1] u18

] x1
D = xxSx2

n−2] u18

] x1
D¯ = xn] ū18

] x1
,

sA2d

where

x ; x2 +
D2

2g

]

] x2
.

The resulting formula has derivatives of high orders, and
hence stability analysis would be somewhat intricate.

APPENDIX B: SPECTRAL CUTOFF
AND TOP-HAT FILTERS

In Ref. [14], Klimas showed that the Gaussian filtered
Vlasov equation can be rewritten into a closed form in terms
of the filtered distribution function without any approxima-
tion. Also, in Ref.[38] (see also Refs.[10,26]), Yeo showed
that the Gaussian filtered Navier-Stokes equations are written
in a closed form having an infinite series. Their results have
been utilized in our study, as described in the present and
previous papers. This Appendix is devoted to showing that
when the spectral cutoff or the top-hat filter is adopted, it is
in general impossible to analytically derive an exact, closed
formula.

Let us consider two arbitrary velocity fields

usmdsxd = „u1
smdsxd,u2

smdsxd,u3
smdsxd… for m= 1,2,

whose spectra are

ûsmdskd = „û1
smdskd,û2

smdskd,û3
smdskd… for m= 1,2,

where x=sx1,x2,x3d and k is the wave-number vector. If
these velocities, at a certain instantt1, satisfy

ûs1dskd Þ ûs2dskd for uk u . kc

but

ûs1dskd = ûs2dskd for uk u ø kc,

and

us1dsxd = us2dsxd for all x,

wheres·d denotes the spectral cutoff with an identical cutoff
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wave numberkc, then theclosedequation will provide the
same result after this instantfi.e., us1dsx ,td=us2dsx ,td for
t. t1g, although the unfiltered velocities have different high-
wave-number modes. This unacceptable conclusion has re-
sulted from the assumption that a closed formula exists.

If, on the other hand,

us1dsxd = us2dsxd + cosskx2di

is true at an instantswherek is a constant wave number and
i denotes the unit vector in thex1 directiond and the wave-
length of the cosine function in this equation is, for example,
equal to the filter width of the top-hat filter appliedsat leastd
in the x2 direction, then

us1dsxd = us2dsxd for all x.

fHere, s·d denotes the top-hat filtering.g As in the previous
case, this result denies the existence of a closed formula.

The above results imply that in order for an exact closed
formula to exist, the spectrum of the applied filter needs to
have a nonzero value foruk uÞ`. The convolution product in
the physical space using a filter functionL,

usmdsxd =E
−`

`

Lsx − jdusmdsjddj,

is represented in the Fourier space by the simple multiplica-
tion of the spectra ofL andusmd

ûsmdskd = L̂skdûsmdskd.

Based on the above, we know that ifûs1dskdÞ ûs2dskd for

certain k and L̂skd has a nonzero value for allk, then
ûs1dskdÞ ûs2dskd at least for the certaink and consequently
us1dsxdÞus2dsxd at least in some regions; more specifically, if

the adopted filter function is not equal to zero for allk,
filtering different velocity fields results in different filtered
velocity fields.

The present conclusion is in opposition to the theoretical
result of Caratiet al. [26] which proved mathematically the
existence of a closed formula in the top-hat case. Let us
consider the cause of this discrepancy. In the study of Carati
et al., it was first assumed that the generalized expansion
series for one-dimensional filtering in thex direction takes
the form of

sabd = o
r,s=0

`

crs]x
r ā]x

sb̄, sB1d

wherea and b are arbitrary, continuous, and differentiable
functions ofx andcrs are real constants. We show here that
this assumption is not always valid for top-hat filters. Ifa is
a sinusoidal wave whose wavelength is equal to the charac-
teristic width of the applied top-hat filter, thenāsxd=0 for
any value ofx and consequently the right-hand side of Eq.
sB1d is also equal to zero for anyx if crs are finite values.
However, the left-hand side of this equation is not necessar-
ily zero under the present condition; if, for example,b=a,
thenabù0 for anyx and thussabd.0. This contradiction is
caused by the fact that the value of the top-hat filters can be
zero in the Fourier space. The generating function, Eq.s3.7d
of Ref. f26g used to derive the generalized expansion series,
is definable only for the filters that always have a nonzero
value in the Fourier space as Gaussian filters, because that
function diverges at the wave numbers for which the filter
value is zero. Therefore, the expansion series for top-hat fil-
ters is definable only if the filter width is smaller than the
smallest resolved scale. When this restriction is not fulfilled,
the expension series should not converge.
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