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Underlying mechanism of numerical instability in large-eddy simulation of turbulent flows
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This paper extends our recent theoretical work concerning the feasibility of stable and accurate computation
of turbulence using a large eddy simulatidv. Ida and N. Taniguchi, Phys. Rev. &, 036705(2003)]. In our
previous paper, it was shown, based on a simple assumption regarding the instantaneous streamwise velocity,
that the application of the Gaussian filter to the incompressible Navier-Stokes equations can result in the
appearance of a numerically unstable term that can be decomposed into positive and negative viscosities. That
result raises the question as to whether an accurate solution can be achieved by a numerically stable subgrid-
scale model. In the present paper, based on assumptions regarding the statistically averaged velocity, we
present similar theoretical investigations to show that in several situations, the shears appearing in the statis-
tically averaged velocity field numerically destabilize the fluctuation components because of the derivation of
a numerically unstable term that represents negative diffusion in a fixed direction. This finding can explain the
problematic numerical instability that has been encountered in large eddy simulations of wall-bounded flows.
The present result suggests that this numerical problem is universal in large eddy simulations, and that if there
is no failure in modeling, the resulting subgrid-scale model can still have unstable characteristics; that is, the
known instability problems of several existing subgrid-scale models are not something that one may remove
simply by an artificial technique, but must be taken seriously so as to treat them accurately.
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I. INTRODUCTION namic Smagorinsky{5] modely, which have been con-
) ~ structed based on a filtering procedure and the statistical
Turbulence is one of the unsolved problems of physicgyroperties of turbulence, have a numerically unstable prop-
[1]. Because a complete theoretical description has not yedrty, and hence some artificial numerical treatmepets.,
been achieved even for a relatively simple flow configura-smoothing or clipping of the SGS stre¢smve been incorpo-
tion, numerical simulations are commonly used as a powerated so as to guarantee numerical stabilys—§. While
ful tool for analyzing turbulent flows. Typical numerical ap- the mechanisms of these models’ unstable behaviors have
proaches include the direct numerical simulatiiNS), the  been described in the literatuce.g., Refs.[2,8-11), the
Reynolds-averaged Navier-Stok¢éRANS), and the large underlying reason as to why the SGS models have an un-
eddy simulationLES). In DNS, all the scales of motion in Stable property has, to the authors’ knowledge, not yet been
the turbulent flows are resolved by sufficiently fine compu-fully clarified. To construct an excellent SGS model that is
tational grids, whereas in RANS, only the evolution of meanfree from artificial, unphysical numerical treatments and has
quantities is solved. LES is an intermediate technique be@PPlicability to a wide range of flow configurations with high
tween these approaches, directly solving the large scales bgfcuracy and robustness, it is necessary to elucidate the un-
modeling small-scale eddies by employing a subgrid-scal@€rying mechanism of those unstable properties. Is this nu-
(SGS model (or a subfilter-scale modgethat approximately menca!)problem caused by a failure in modeling or by other
accounts for the effects of the small scales on the large scalé@cwrs' To answer this question, it should be meaningful to

: onsider a similar but idealized questionhether a com-
[2]. Because LES enables us 10 solve time-dependent larg letely accurate SGS model, if it exists, would be numerically
scale turbulent flow problems with a relatively small compu-

; : ) stable.
tational time and storage compared to those required for In Ref.[10], Leonard has shown that the tensor-diffusivity

DNS.’ this tgchnlque has recently begn usgd not only for 8C8nodel, which was derived by truncating an exact expansion
demic studies but also for practical industrial flow computa-geries of the SGS stress terms and is thus exact under a
tions that need tw_ne-dependent SOIUt'O.nS' L . certain condition, should behave unstably along the stretch-
. One. of the major problems of LE.S.'S numerical instabil- ing directions of fluid motion. This unstable behavior results
Ity. AS Is a'“?ady. Ifnown, several existing SGS modelg., from the negative diffusivity of that model, which makes the
the tensor-diffusivity 3], the scale-similarity4], and the dy- 44\ erning equations ill-conditioned and leads to numerical
instability when treated numerically by, e.qg., finite difference
methods. Winckelmanst al. [8] have performed several nu-
*Electronic mail: ida@koma.jaeri.go.jp; merical experiments using the pufand mixed tensor-
URL.://http://ktolab.iis.u-tokyo.ac.jp/ida/index.htm diffusivity model and have pointed out that the model be-
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haves unstably under a wall-bounded flow condition, while it II. THEORETICAL INVESTIGATIONS
can provide a stable result for turbulent isotropic decay. In a
recent papefl12] we have shown theoretically that the filter-
ing procedure, which is the most fundamental component of Incompressible, viscous fluid flows are described by the
LES, is a potential seed of the numerical instability in LES. Navier-Stokes equations, which read

Without having resorted to any SGS model, but based on a

simple assumption regarding the streamwise component of ~ dU; + Juy _ Jp + Pu;
flow velocity, we found that under a wall-bounded flow con- it ax B aX; V(;X]. IX;
dition, the application of a Gaussian filte@ne of the filters
commonly used in LE$13]) to the Navier-Stokes equations
results in the appearance of a numerically unstable term, a
cross-derivative of the filtered velocity component, which X
can be decomposed into diffusion and negative-diffusion . - . L
terms. The above findings indicate that apparently the applivhere Einstein’s summation convention is assumed, ®nd
cation of Gaussian filtering stabilizes the physical properties ti(X1,%2,%s,t) are the velocity components, is the pres-

of the governing equations, but this is not always the casesure divided by the constant fluid density, ands the kine-
That result implies that even a completely accurate SG#natic viscosity. In LES, a filter is applied to this system of
model that perfectly reproduces the physical properties of théquations to separate the large and small scales. This filter-
true SGS components might not always be numericallying procedure is in general achieved by the following con-

A. Filtering approach

for i=1,2,3, (1

2y, o)

stable. volution:

However, the theoretical works of both Leonard and Ida Y=o
and Taniguchi are insufficient to fully clarify the mechanism F(x, ... t)= L(x=X)F(X, ... bdX, (3)
of numerical instabilities in actual simulations. While those X=—o0

studies have only considered the instantaneous nature of the — _ . )

SGS model or of the SGS forces, it is possible that theitVNere(-) denotes the filtered quantity is an independent
time-averaged nature is dissipative and that stable simulg/riable of an arbitrary functior, and L(X) is the filter

tions can thus be achieved. Indeed, as mentioned above, thghction. In the present study, we assuin) to be the

tensor-diffusivity model, which has an unstable property, carf>aussian function

provide stable solutions for an isotropic turbulent fl§8y. )

This observation suggests that further efforts must be made L(X) = 1 /Lexp<— ﬁ) (4)
to improve our understanding of the numerical instabilities in A%nr A?

LES. X=

In the present paper, we have extended our previous wo
so as to obtain more acceptable and reliable results and
show that this numerical problem is universal in LES base
on Gaussian filtering. We have previously assumed that thé

. hich satisfies[{=", L(X)dX=1, whereA is the filter width
ssumed to be constanand vy is a real, positive constant.
n the previous paper we set #&=1/2 asdone by Klimas for
e Vlasov equation, whiley=6 is generally used in LES
3]; we adopt the latter value in the present study. Applying

instantaneous value of the streamwise velocity component o . -
y b the filtering operation to Eqg1) and(2) yields

linearly proportional to the distance from a plane wall paral-

lel to the bulk flow. In contrast, in the present paper our oU duu o PU

discussion assumes that the statistically averaged streamwise — = o +v .

velocity component is linearly proportional to the distance Jt  Ix 9% 9% 9%

from the wall, an assumption that is more realistic becausg,

this is the case of a viscous sublayer forming near a plane

wall. Furthermore, we discuss cases where an axisymmetric U _duu _ dp Pu; aT

swirl exists in the statistically averaged velocity field. As will 9t ax o ax Vaxox  ax’ (6)

be shown in the following section, a numerically unstable ! ' e !

term with a time-independent coefficient can appear in both _

situations. This term is always unstable in a fixed range of 7ij = Uilj — Uil

directions, while the previously discussed unstable characte(y;ip,

istics of the model and of the SGS terms depend on the

directions of instantaneous stretchifp$0] or of instanta- au;

neous shear§l?]. Therefore, the present theoretical result ax =Y, ()

can more accurately explain the numerical instabilities fre- !

quently encountered in inhomogeneous flows that involve avhere we used

strong steady shear in the mean velocity field. - _ _
This paper is organized as follows: In Sec. Il B we reex- af\ of af af

amine the wall-bounded flow case, and in Sec. Il C we ex- ot = ot and X = Ix

tend our theory to swirling flow cases. In the Appendixes, we ! :

provide additional notes on further extensions of our theory(f being a dependent variapleand 7; is the so-called SGS

Section Il presents concluding remarks. stress tensor that generally needs to be modeled.

(5)
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Before getting into the main subject, we present here T - 2 . o

: : . o duu; —du A% Fu] U Julu
some mathematical tools useful for the present investigation. —Lt- Ul—1 +——2 4 —lﬁé +—1
Supposing that the Gaussian filter is applied in xhdirec- IX 2y% 0% 9% 9%
tion, we have _ouW A2 AU

= OBXo— + B—
ﬂ 2(9)(1 '82)/07X1(9X2

+ Buy + M (16)
— — A2yf 7%
(X f)=xf+_——— (8) — .
2y 9% where we use Eq8) andU;=U, given easily by Eq(10).
Even if a three-dimensional Gaussian filter is adopted, al-
and most the same formula is derived becalseonly depends
- on Xy, and hence no additional term is derived by filtering in
(xf)y=xf for j#i, (9)  the other directions. Meanwhile, the convection terms in
terms of the filtered velocity componentgy;u,)/ dx;, can be
which can be given in the same manner as shown in Refsyritten as
[12,14,19, and have been utilized in, e.g., REL6]. Using

Eq. (8), we have s _Uﬁ_ai . U, U
—==-y, —Uuy+ —'—a . (17)
Yi: X, (10) (9Xj (9X1 ﬂXZ Xj
From Egs.(16) and(17), we have
__ A2
H=xP+ — —
l?Xj 2’)’(9X1(9X2 (9XJ )

Based on these results, in the following sections we per-
form theoretical investigations concerning the Gaussian fil« — : oy —A :
. : Substituting this and“U,/dx; dx; =0 into Eq.(6) yields
tered Navier-Stokes equations under a plane channel and“ 9 et a.6)y
swirling flow conditions.

du; duu ap U N aTH
at dX; IXy XX 2ydXy dX

. d(ufug —ufuy
Suppose thak;, x,, andxs, respectively, are the stream- - 2 (19

wise, the wall-normal, and the spanwise directions, and a 2
plane solid wall is set fok,<0. Decomposing the velocity
components into the statistically averaged vdllyend fluc-
tuation partu/, we have

B. Plane channel flow

which can be considered an equation for bethand u;
because

Ty 7
Ui(x,1) = Ui(x) + U (x,1), (12) I _du
at at
whereU; is assumed to not depend on time. Furthermore, we
assume that The second-to-last term of EL9) is a cross-derivative of
the dependent variable]. As has been proved in several
U(x) = (U3(x),U5(x),U5(x)) = (8%,,0,0 (13)  studies (e.g., Refs.[12,15), the derivatives of this type
should be numerically unstable when, for instance, a finite
with B being a real constant, i.e., the mean streamwise vedifference technique is adopted for solving the equation. In
locity is linearly proportional to the distance from the wall. what follows, we consider the stability condition for Eq.
(The extension to more general cases is briefly discussed if19).

Appendix A) Based on these assumptions, one knows The last three terms of Eq19) may make a dominant
contribution to the numerical stability of LES. We will first
au; _au (14 focus our attention on the second- and third-to-last terms
ax,  Ix
' ' Au, A2 A

—B5C (20)

Substituting Eqs(12) and(13) into the convection terms 4 9% 0% 2y 9% 9%

in the equation fou,; and using Eq(14), we have
Applying the coordinate transformation of

Juu au; du au’uy au; Juluy
— oy, —t4 —1ué +— = gx,— + puy + —L,
(9X‘ (9X (9X (9X‘ &X Xi X1+X2 _X1+X2
) ! 2 ] ! : (51 7]) = [~ 1 [~ ’ (21)
(15 V2 V2

Applying Gaussian filtering in the wall-normal direction to which represents rotation by 4%fround thex,; axis, Eq.
this equation yields (20) is rewritten as
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#uy  Fuy Py A%2[1570] 14 recent review by Piomelli and Balarg9]. The numerical
4 Py & + 97 + 2 Fo, 5(9_52 o9 (22 problem that we have suggested above provides a taste of
K %3 Y 7 the difficulties of constructing an excellent model.
From this, it can be seen that the following restriction is 1he stability condition presented above would be partly

required to ensure that E(R2) is a positive viscosity weakened if the last term of E¢L9) is modeled using an
eddy-viscosity model. However, this treatment does not al-

A2 ways achieve a stable solution. Actually, Winckelmansil.
V= 4_},|,3| =0. (23 [8] have observed by numerical experiments that for a plane
channel flow, a dynamic mixed model based on the tensor-
The shear gradier@ may have different values depending diffusivity model (which can accurately represent the char-
on the problems considered. We consider here a simple escteristics of second-order cross derivatiyét]) generates
ample to show concretely how restrictig@3) works in a  numerical instabilities that eventually make the numerical
realistic situation. As is well known, in the viscous sublayersimulation blow up. To remove those instabilities, they were

of turbulent channel flows, the statistically averaged streamforced to add an artificial damping coefficient to the tensor-
wise velocity follows[17]: diffusivity portion. In the mixed model that they used, the

coefficient of eddy-viscosity part was well tuned by a dy-
|u,] namic procedure. Essentially the same observations of the
X2/ (24)  numerical instability of the dynamic mixed model can be
found in Ref.[11] by Kobayashi and Shimomura. In those
with u_ being the wall-friction velocity. Using Eq24) and  studies, the wall-normal grid width was set to be several
rewriting reduce Eq(23) to times larger than that used in DNS. That is, those studies
suggest that, for a large gricand filten width, which is
much-needed in practical applications, the addition of an
eddy-viscosity term does not always guarantee numerical
stability. If, on the other hand, all the SGS terms are modeled
where the superscript + denotes a quantity in the wall unitsysing an eddy-viscosity model whose coefficient is guaran-
For y=6, this result essentially corresponds to the stabilityteed to be positive, the numerical stability of the filtered
condition derived by Kobayashi and Shimomura from thesystem would be guaranteed in many cases. However, it has
tensor-diffusivity term in a dynamic SGS modéll]. been suggested by many researchers that eddy-viscosity
We should note here that E@5) is a minimum condition  models have several deficiencies that make the LES results
for stabilizing the numerical solution; the last term of Eq. suspiciouge.qg., Refs[2,9,20-2%). For instance, as has fre-
(19), which we have neglected, can also be a seed of numerguently been demonstrated hypriori tests using DNS tech-
cal instability because if, for exampley <x; is true at a niques, the SGS quantities modeled using eddy-viscosity

U 1(X2) = u’T(

14

u —
Wy s av <)y, (25

.
14

certain instant and location, then models do not correlate well with the actual SGS quantities
- [2,9,20,23,28 implying that these models have low accu-

U duy . U racy and/or narrow applicability. Indeed, in the present case

ulaxl ul(gxl Xy Iy the eddy-viscosity models cannot describe the cross-

derivative term in Eq(19), which is a hybrid of positive and
(See Ref[12].) Nevertheless, this incomplete condition cre- negative diffusions. Moreover, eddy-viscosity models were
ates a strong restriction on the grid width. The grid width  constructed under the assumptions that the subgrid turbu-
should satisfyh* < \6~2.4 for A*=2h", a setting that has lence is isotropic and the filter scale is in an inertial range,
frequently been used, oh*<\6/2=~1.2 for A*=4h" assumptions that are in general both violated in inhomoge-
which is necessary for the contribution of the SGS force toneous turbulent flows, especially near walls. Furthermore,
be significant compared to the truncation and aliasing erthe dynamic types of eddy-viscosity models need artificial
rors of a second-order finite difference schefi8]. (We  techniques for smoothing the model coefficient and for clip-
should note here that this restriction is imposed only orping its negative valueg2,5-7,27. Based on the above, we
the grid width in the wall-normal direction because only consider the eddy-viscosity models to be insufficient. Most
the filtering in this direction yields the cross-derivative of the recent efforts at SGS modeling have been devoted to
term, as mentioned alreadyThis result implies that at developing a model that does not strongly rely on eddy-
least several grid points are needed in the viscous sublayeiscosity modelg7,8,25,26,28-3]L Models based on a kind
to guarantee numerical stability, which is a formidableof “defiltering” procedurg25,29,3Q are one such approach,
restriction in practical applications of a large-scale high-determining significant portions of the SGS terms by an ana-
Reynolds-number turbulent flow. It is known that when lytical, not empirical, procedure. The mixed models based on
the inner layer of turbulent boundary-layer flows is re-the tensor-diffusivity terni7,8,3] can also be categorized
solved, the number of grid points required for LES ex-into this type[26]. We should note here that attempts to
ceeds current computational capacities even at moderatmprove eddy-viscosity models are also being continued;
Reynolds numbers, and hence developments of SGS modee, e.g., Ref§24,27,32,3R
els that are applicable to a coarse wall-normal grid and of It is worth noting that the numerical stability of the cross-
wall models that do not need a strong refinement of thederivative term in Eq(19) is time-independent, as this term
near-wall grids are the most pressing issues of LES; see @ways reveals a negative diffusivity in a fixed range of di-
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rections, whereas the numerical stability of the last term of 5 y.u au! Ju. auU dU. du'u
° - ) . 1_y 1iU 1, 1r+uU 1, 1
the same equation may be time-dependent. As mentioned in o 1(9)(1 2(9)(2 9% b+t U 9% 7%, ;

Sec. |, Winckelmanst al. have pointed out that the numeri-
cal stability of the tensor-diffusivity model depends on the (28)

problems that they have considered; obtaining stable res:'“"Where the first four terms on the right-hand si&RHS) result
is difficult to achieve for a strongly !nhomogeneo_@mall- from the existence of the swirl, among which the first and
bounded flow, even when an eddy-viscosity term is added,Second terms

but is possible for a homogeneous flow even by the pure

tensor-diffusivity model[8]. They have explained these re- au; auj au; au;

sults as follows: For the homogeneous flow, the direction in Ula_ + Uza— P (29

which the tensor-diffusivity term reveals the negative diffu- X1 %2 X1 X2

sivity evolves continuously in time and space, and hence thenay have a significant influence on the numerical stability of

model term may be dissipative on time average. However, ifhe equation fol].

the inhomogeneous flow case, long-lived negative diffusion \We show here that the filtered formula and its stability

events can take place near the wall, leading to numericathange depending on how the Gaussian filtering is applied.

instability and a resulting divergence of the solution. AsAppling the Gaussian filter in th&, direction to Eq.(29)

mentioned above, those numerical findings indicate an inadesults in

equacy of the previous stability analyses by Leongld|

and by Ida and Taniguchil2], which have only considered E( au’) ( 3“1) . A2 Al au;
2

9%y

the instantaneous behavior of the SGS model or the SG§ U1+ saxp o~ ta— —aXyT o,
term. The present theoretical findings, showing the appear- 9% X 2y0% 0% 9%
ance of a term that is always numerically unstable in fixedyhich can be rewritten as

directions and hence is unstable on time-average as well, can

more correctly explain the problematic numerical instability ( &Ui> —au] ( ,9u1) —au, A% AU

encountered in the simulations of plane channel flg8y$1]. Up—— | -Ui—— + U 2

-a_— .
X 2y 39X X
(30

C. Swirling flow
. . . The cross-derivative term appearing on the RHS may cause
Turbulent flows involving a large-scale swirl are of prac-

. . ; . . . .~ numerical instability when the absolute value of its coeffi-
tical importance in connection with combustion engineering, ..+ ic sufficiently large. In contrast, when the Gaussian

aeroacoustics, meteorology, and so on. In this section, w . C N X
discuss the LES of turbulent flows having a rotating mean lter is applied in both they, andx; directions, we obtain a

velocity about thexs (or z) axis, and show that the existence stable formula
of the swirl can cause numerical instability through the ( &ui) (U aui) m A2 3251
7 —

—aXo T ta_—
Zaxl 279X X%,

Gaussian filtering operation.

. ) : : : . 1
First, we consider a very simple case in which the swirl % X

has a constant angular velocity; that is, the mean velocity Ju, A% AU
takes the form of —aXyT— —a—
&Xz 2‘)’(?)(1 (9X2
U(X) = (CYXZ,_ axllo)! (26) &Ui &Uj'_
where« is a real constant. This mean velocity satisfies 1 2
X and thus
U-x =0, _
aup\ —ay aup\ —auy
. (u1—1>—ul—1+(uz—l>—u2—1=o. (30)
|U|/X :|a|, (9Xl (9X1 F?XZ (9X2
and Equation(31) has no cross derivative.
Next, we consider the same example but in the cylindrical
U coordinate(r, #,2). In this case, the mean velocit26) and
a_xl =0, the instantaneous velocity, respectively, are represented by
i
. u(r,0,2) = (U;,UyUy) =(0,-ar,0), (32
wherex” =(xq,%,,0). As a result, we know
and
Jd Ui, o [
Pl (27) (Ur,Ug Uy) = (ug, Uy + U, uy), (33
i

and the nonlinear terms in the Navier-Stokes equatiomfor
Using the above, the convection terms tgrare rewritten as take the form of
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Jdu usdu Jdu
9Up  UpIUp  \ IUo

UrUp
uf Z =
ar r 06 Jdz

= hy, (34)

where the velocity components should satisfy

ar r radoé dz Ir r rado dz’
(395
Substituting Eq(33) into Eq. (34) yields
a/
ozﬁa_uu(a_%&;)u;

r 06 ar r
au, u,du, au, uu,
ar r 060 0z

The terms in the last parentheses represent the nonlinear i
teraction between the fluctuation components, whereas t
remaining terms describe the interaction between the mea
and fluctuation portions. Appling the Gaussian filter in the
direction with a filter width ofA, to the first term results in

, 37
Y90 1 a0 @7

r 96 B

where we used Eq10) and assumed> A, so that the value

of the Gaussian filter is sufficiently close to zerorat0. No

unstable term appears in E@7). Even when the Gaussian
filter is applied in both ther and @ directions, almost the

same formula is obtained becausg depends only orr.

PHYSICAL REVIEW E 69, 046701(2004

aul au A? QU
(U_o_Ue>:(al+a2r)_Ua+ A2 #,

. (39
Y 00 T %oyarae Y

which can be rewritten as

(U_a_u) Uyol _

2 2
Vg AT duy A7 PU
r do

-y + ay
2y 96 2ydrae
(40)

roe

because, based on Eq$0) and(11)

_ A?
Ug=aqr + az(r2+ —r>
2y
The last term of Eq(40) is a cross derivative of the depen-
dent variable and should destabilize the numerical solution,
whereas the second-to-last term represents convection in the
fi.direction that can be solved stably. Fay=0, the RHS

hl‘ﬁgrms of Eq.(40) vanish, and this equation corresponds to

g. (37). More specifically, the instability in this case is due
to the second-order component in the mean velocity, which
violates the uniformity of the angular velocity and thus rep-
resents a shear.

As in the plane-channel case, the cross-derivative terms
derived above have a time-independent coefficient and thus
should lead to numerical instability if an unsuitably large
filter is adopted. The present results imply that such an un-
stable term can appear in many situations. In a future paper,
we will consider more general and complicated flow con-
figurations to create a generalized theory of numerical insta-
bility due to filtering operation$34].

Specifically, in the present case the resulting formula is not,

unlike the previous case, dependent on how the Gaussian

filter is applied.

The above results, which reveal that the numerical stabil-

Ill. SUMMARY AND CONCLUSION

In summary, we have theoretically investigated the nu-

ity of LES depends not only on the flow configuration but Merical ins'gability of LES .caused by _the filtering_ p'rocedure
also on the filtering strategy and coordinate system adopte@ased on simple assumptions regarding the statistically aver-

can be interpreted as follows: As has been shown in [R&f.

aged velocity, and have shown that Gaussian filtering yields

and in the preceding section, the existence of a shear leads @numerically unstable term, which always reveals a negative
the appearance of a numerically unstable term. Although n@iffusivity in a fixed range of directions in cases of both

shear exists in the mean flow profile described by ®6), a

plane channel flow and swirling flow. This conclusion con-

virtual shear is observed when the Gaussian filter is appliefifms and extends that of our previous wqk?]. We antici-

only in one direction in the Cartesian coordin&ke or x,),

pate that it would be interesting to examine the relationship

resulting in the derivation of the cross-derivative term. ThisPeétween this numerical instability and the shear-induced
problem does not arise for the cylindrical coordinate, sincéPhysica) instabilities in turbulenc¢35,36.

the mean convection velocity in tHe, 6) space

drdey _(, Y\ _ o _
(dt’dt>_<u“ r>_(o, %,

is uniform.

Furthermore, we have presented several additional find-
ings. In Sec. Il B, we showed that in the channel-flow case,
this numerical problem strongly restricts the wall-normal
grid width necessary for achieving stable and accurate solu-
tions. In the academic computations of a plane channel flow
using a LES technique, the grid width in the wall-normal

Last, we consider a case where the mean velocity has @rection has sometimes been set to almost the same as that

second-order term, i.e., assuming

U(r,6,2) = (0,aq1 + aor?,0), (38)

required in DNS, and no filter is adopted in this direction
(e.g., Refs.[5,20,21,28,3D; the present result provides a

grounding for this custom. Furthermore, this result indicates
a significant difficulty in developing an excellent SGS model

wherea; anda, are real constants. Substituting this into thethat can provide satisfactory.e., not only stable but also
first term on the RHS of Eq.36) and applying the Gaussian accuratg solutions, even with large wall-normal filter

filter in the r direction, we have

widths, which is seriously desired in practical applications of
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high- (and even moderateReynolds-number turbulence. In tion. Using the Taylor expansion, the arbitrary function
Sec. Il C, based on investigations of swirling flow cases, weJ,(x,) is represented by a polynomial of infinite order
pointed out that the numerical stability of the filtered equa- .

tions depends not only on the flow configuration, but also on "

the dimension of the Gaussian filtering and the adopted co- Ui(xp) = E anXy,

ordinate system. This finding would be of particular impor- n=0

tance in practical applications that use a general curvilineafherea, are real constants. Therefore, what we have to do is

coordinate system or unstructured grids. to consider the closure of
In the present studyand also in our previous papeit
was assumed implicitly that all the spectral modes contained auy
in the velocity field are fully resolved because the Gaussian ( 2(9—)() (AL)
1

filter does not cut off any modes, but only damps the high-

frequency modegSee Appendix B, which presents a relatedjth n being an arbitrary positive integer. This is achieved as

remark concerning cases where the spectral cutoff or the toRg|iows: Using Eq.(8) successively, Eq(Al) is rewritten
hat filter is employed, both of which eliminate certain i io 5 closed form in terms afl, as

modes) The present results therefore indicate that even in
such an ideal case, trmmpleteSGS modelor, more pre- au! au ou! i
cisely, thecompletesubfilter-scale model whose characteris- xz(xg’l—l) = (xg‘l—l) = (xg_z—l) S et
tic length is determined independently from the grid wjgdth Iy 9% IXy 9%
which can completely reproduce the properties of real SGS (A2)
stresses, can be numerically unstable when treated numeri-

cally, since the complete model perfectly describes the chaihere

acteristics of the unstable cross-derivative term. This prob- A2 g
lem poses a dilemma for practitioners of LES who are X=X+ ——.
looking for an accurate and stable SGS model. To improve 2y 9%,

model accuracy, this numerical instability problem should _bel'he resulting formula has derivatives of high orders, and

conironted. Hov_v_ever, if a rough, artificial treatment IS o ce stability analysis would be somewhat intricate.
adopted for stability, the accuracy of the LES results will not

be guaranteed. A potential approach to overcoming this dif-
ficulty is, as suggested in our previous pap&z], to con- APPENDIX B: SPECTRAL CUTOFF
struct a stable and accurate numerical solver for the numeri- AND TOP-HAT FILTERS
cally unstable term, though this would admittedly be quite a In Ref. [14], Klimas showed that the Gaussian filtered
difficult task. (Leonard[10] and Moeleker and Leonaf@7] Vlasov equation can be rewritten into a closed form in terms
have proposed Lagrangian methods based on the tenswt the filtered distribution function without any approxima-
diffusivity model and an anisotropic particle scheme to solvetion. Also, in Ref.[38] (see also Refd10,26), Yeo showed
the negative-diffusion problems, and have achieved stablihat the Gaussian filtered Navier-Stokes equations are written
solutions for a two-dimensional scalar transport equatiorin a closed form having an infinite series. Their results have
with known velocity fields. However, several issues remainbeen utilized in our study, as described in the present and
to be overcome to extend those methods to the case @frevious papers. This Appendix is devoted to showing that
Navier-Stokes turbulend@7].) Further careful and vigorous when the spectral cutoff or the top-hat filter is adopted, it is
considerations are necessary for this instability problem to bén general impossible to analytically derive an exact, closed
solved. formula.
Let us consider two arbitrary velocity fields
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lation Software for Industrial Science.” where x=(xy,X,,X3) and k is the wave-number vector. If

these velocities, at a certain instant satisfy
APPENDIX A: CLOSURE FOR HIGH-ORDER N ~
(1) (2)
MEAN VELOCITY 00k) # 090%) for - [k| > ke
As a first step toward constructing a general theory for thebut

filtering instability, let us consider the closure of

(Ulﬁ) and
%,

0Dk)=0@k) for |k| <k,

uD(x)=u@(x) for all x
in the case wher&J, is a general function ok,, under the o t %) '
assumption that the Gaussian filter is applied inxthdirec-  where(:) denotes the spectral cutoff with an identical cutoff
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wave numberk,, then theclosedequation will provide the the adopted filter function is not equal to zero for &ll
same result after this instant.e., uD(x,H)=u@(x,t) for filtering different velocity fields results in different filtered
t>1,], although the unfiltered velocities have different high- velocity fields.

wave-number modes. This unacceptable conclusion has re- The present conclusion is in opposition to the theoretical
sulted from the assumption that a closed formula exists. result of Caratiet al. [26] which proved mathematically the

If, on the other hand, existence of a closed formula in the top-hat case. Let us
Doy (2) ) consider the cause of this discrepancy. In the study of Carati
U (x) = ut(x) + cogkx)i et al, it was first assumed that the generalized expansion

i denotes the unit vector in the direction and the wave- the form of

length of the cosine function in this equation is, for example, o
equal to the filter width of the top-hat filter appliddt least @b = Crsﬁrgasﬁ (B1)
in the x, direction, then o0
uD(x)=u@(x) for all x. wherea and b are arbitrary, continuous, and differentiable

H 0 d h hat filterinbAs in th . functions ofx andc, are real constants. We show here that
[Here, (-) denotes the top-hat filteringAs in the previous this assumption is not always valid for top-hat filtersalfs

case, this result denies the existence of a closed formula. 5 ¢inusoidal wave whose wavelength is equal to the charac-
The above results imply that in order for an exact closedgistic width of the applied top-hat filter, theaix)=0 for

Lormula to exist, thle s]E)ectruozn _Ic_)rf] the applli(;,\'d filter dne(?[QS toany value ofx and consequently the right-hand side of Eq.
ave a nonzero value fgk|# . The convolution product in (B1) is also equal to zero for any if c,s are finite values.

the physical space using a filter functian However, the left-hand side of this equation is not necessar-
] ily zero under the present condition; if, for examplesa,
u™(x) = f L(x = &u™(&)dg, thenab= 0 for anyx and thug(ab) > 0. This contradiction is
- caused by the fact that the value of the top-hat filters can be
is represented in the Fourier space by the simple multiplicazero in the Fourier space. The generating function, (Bd)

tion of the spectra of. andu™ of Ref.[26] used to derive the generalized expansion series,
o R is definable only for the filters that always have a nonzero
™ (k) = L(k)a™ (k). value in the Fourier space as Gaussian filters, because that

. N function diverges at the wave numbers for which the filter
Based on the Aabove, we know that(f (k) # A (k) for value is zero. Therefore, the expansion series for top-hat fil-
certain k_and L(k) has a nonzero value for ak, then ters is definable only if the filter width is smaller than the
0% (k) # 0@ (k) at least for the certailk and consequently smallest resolved scale. When this restriction is not fulfilled,
u®(x) #u®@(x) at least in some regions; more specifically, if the expension series should not converge.
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